NREL Researches Algae and Garbage for Feedstock

According‌ ‌to‌ ‌U.S.‌ ‌Department‌ ‌of‌ ‌Energy‌ ‌analysis,‌ ‌over‌ ‌1‌ ‌billion‌ ‌tons‌ ‌of‌ ‌biomass‌ ‌could‌ ‌be‌ ‌sustainably‌ ‌collected‌ ‌and‌ ‌processed‌ ‌into‌ ‌biofuels‌ ‌by‌ ‌2030‌ ‌in‌ ‌the‌ ‌United‌ ‌States. Making this a reality depends on improvements‌ ‌in‌ ‌how‌ ‌biomass‌ ‌is‌ ‌grown,‌ ‌collected,‌ ‌and‌ ‌processed.‌ ‌Emerging‌ ‌feedstocks‌ ‌like‌ ‌municipal‌ ‌solid‌ ‌waste‌ ‌(MSW)‌ ‌and‌ ‌carbon-dioxide-eating‌ ‌microalgae are promising‌ ‌ingredients‌ ‌for‌ ‌making‌ net-zero-emission‌ ‌biofuels‌ ‌and‌ ‌bioproducts.‌ ‌

After‌ ‌receiving‌ ‌over‌ ‌$2‌ ‌million‌ ‌from‌ ‌the‌ ‌U.S.‌ ‌Department‌ ‌of‌ ‌Energy‌, Bioenergy‌ ‌Technologies‌ ‌Office‌ ‌(BETO), the‌ ‌National‌ ‌Renewable‌ ‌Energy‌ ‌Laboratory‌ ‌(NREL)‌ ‌is‌ ‌helping‌ ‌unlock‌ ‌the‌ ‌full‌ ‌potential‌ ‌of‌ ‌the‌ ‌U.S.‌ ‌feedstock‌ ‌supply‌‌.‌ ‌

‌the‌ ‌funding‌ ‌will‌ be used to ‌support‌ ‌NREL‌ ‌scientists‌ ‌and‌ ‌partners‌ ‌studying‌ ‌how‌ ‌to‌ best‌ ‌grow‌ ‌photosynthetic‌ ‌algae‌ ‌and‌ ‌efficiently‌ ‌sort‌ ‌municipal‌ ‌solid‌ ‌waste,‌ ‌important‌ ‌steps‌ ‌for‌ ‌making‌ ‌both‌ ‌feedstocks‌ ‌more‌ ‌economical.‌ ‌

“Algae‌ ‌and‌ ‌MSW‌ ‌have‌ ‌unique‌ ‌potential‌ ‌as‌ ‌biofuel‌ ‌feedstocks—carbon‌ ‌sequestration‌ ‌and‌ ‌broad‌ ‌waste‌ ‌reduction,” ‌said‌ ‌Zia‌ ‌Abdullah,‌ ‌laboratory‌ ‌program‌ ‌manager‌,  ‌”These‌ ‌two‌ ‌projects‌ ‌will‌ ‌lower‌ ‌key‌ ‌barriers‌ ‌to‌ ‌scaling‌ ‌up‌ ‌the‌ ‌use‌ ‌and‌ ‌affordable‌ ‌production‌ ‌of‌ ‌these‌ ‌promising‌ resources.” ‌

Nonetheless, making‌ ‌biofuel‌ ‌from‌ ‌algae‌ ‌and‌ ‌MSW‌ has its ‌challenges.‌ Algae ‌must‌  be ‌expertly‌ ‌grow‌n ‌in‌ ‌large‌ ‌outdoor‌ ‌ponds,‌ ‌ ‌exposed‌ ‌to‌ ‌different ‌weather‌ ‌conditions.‌ ‌The‌ ‌algal‌ ‌biomass‌ ‌must‌ ‌then‌ ‌be‌ ‌harvested‌ ‌and‌ ‌processed‌ ‌to‌ produce ‌the‌ ‌fuel-feedstock.‌ ‌A‌s for ‌MSW,‌ ‌the challenge is ‌quickly‌ ‌sorting‌ ‌and‌ ‌processing‌ ‌its‌ mix ‌of‌ ‌glass,‌ ‌metal,‌ ‌plastic,‌ ‌food‌ ‌waste,‌ ‌and‌ ‌other‌ ‌materials‌ ‌that‌ ‌are‌ ‌thrown‌ ‌in‌ ‌the‌ ‌trash.‌ ‌

- Advertisement -
Ad imageAd image

More than 50%‌ ‌of‌ ‌MSW‌ ‌is‌ ‌sent‌ ‌to‌ ‌landfills‌ ‌across‌ ‌the‌ US.‌ ‌This‌ ‌project‌ ‌aims‌ ‌to‌ surpass ‌a‌ ‌first barrier‌ to convert ‌that‌ ‌waste‌ ‌into‌ ‌a‌ ‌resource‌.‌ ‌A‌ ‌team‌ ‌of‌ ‌NREL‌ ‌researchers,‌ ‌along‌ ‌with‌ ‌partners‌ ‌at‌ ‌North‌ ‌Carolina‌ ‌State‌ ‌University,‌ and‌ ‌IBM,‌ ‌will‌ ‌develop‌ ‌and‌ ‌demonstrate‌ ‌an‌ ‌open-source,‌ ‌freely‌ ‌available,‌ ‌and‌ ‌fully‌ ‌functional‌ ‌smart‌ ‌MSW‌ ‌management‌ ‌system.‌ ‌

Employing ‌a‌ ‌combination‌ ‌of‌ ‌spectroscopy,‌ ‌computer‌ ‌vision,‌ ‌and‌ ‌machine‌ ‌learning‌, ‌the‌ ‌sorting‌ ‌system‌ ‌rapidly‌ ‌identify,‌ ‌characterize,‌ ‌and‌ ‌provide‌ ‌informed‌ ‌decisions‌ ‌on‌ ‌the‌ ‌overall‌ ‌quality‌ ‌of‌ ‌different‌ ‌MSW‌ ‌materials.‌ ‌This‌ would ‌allow‌ ‌the‌ ‌AI-driven‌ ‌smart‌ ‌MSW‌ ‌management‌ ‌system‌ ‌to‌ ‌be‌ used ‌with‌ ‌commercially‌ ‌available‌ ‌robotic‌ ‌systems,‌ ‌allowing‌ ‌for‌ ‌proper‌ ‌redirection‌ ‌of‌ ‌the‌ ‌organic‌ ‌fractions‌ ‌of‌ ‌MSW‌ ‌‌in‌ ‌real‌ ‌time‌ ‌at‌ ‌multiple‌ ‌conveyer‌ ‌speeds‌ ‌to‌ ‌the‌ ‌appropriate‌ ‌conversion-ready‌ ‌feedstock‌ ‌destination.‌ ‌

The use o‌f photosynthetic‌ ‌microalgae‌ ‌to‌ ‌capture‌ ‌and‌ ‌store‌ ‌greenhouse‌ ‌gases,‌ ‌such‌ ‌as‌ ‌CO2 ‌from‌ ‌the‌ ‌atmosphereis quickly getting scientists’ attention.‌ ‌A‌ ‌team‌ ‌of‌ researchers ‌aims‌ ‌to‌ ‌improve‌ ‌the‌ ‌capture‌ ‌and‌ ‌storage‌ ‌efficiency‌ ‌of‌ ‌CO2‌ ‌by‌ ‌coupling‌ ‌algae‌ ‌cultivation‌ ‌as‌ ‌photosynthetic‌ ‌and‌ ‌biocatalysis‌ ‌systems‌ ‌to‌ ‌a‌ ‌mechanical‌ ‌tree‌ ‌harboring‌ ‌a‌ ‌passive‌ ‌direct‌ ‌air‌ ‌capture‌ ‌unit.‌ ‌

To‌ optimize ‌the‌ capture ‌of‌ ‌CO2,‌ ‌the‌ ‌NREL‌ ‌team,‌ ‌will‌ ‌study‌ ‌mechanisms‌ ‌‌using‌ ‌biological,‌ ‌engineering,‌ ‌and‌ ‌analysis‌ ‌approaches.‌ Also using ‌techno-economic‌ ‌and‌ ‌life-cycle‌ ‌analysis,‌ ‌the‌ ‌team‌ ‌will‌ ‌study‌ ‌the‌ ‌diet‌ ‌of‌ ‌a‌ ‌highly‌ ‌productive‌ ‌algae‌ ‌species‌ ‌to‌ ‌understand‌ ‌how‌ ‌it‌ ‌might‌ ‌be‌ ‌engineered‌ ‌to‌ ‌better‌ ‌store‌ ‌the‌ ‌GHG ‌as‌ ‌cell‌ ‌biomass,‌ ‌as‌ ‌well‌ ‌as‌ ‌develop‌ ‌novel‌ ‌CO2‌ ‌delivery‌ ‌approaches‌ ‌in‌ ‌combination‌ ‌with‌ ‌the‌ ‌introduction‌ ‌of‌ ‌a‌ ‌highly‌ ‌effective‌ ‌carbonic‌ ‌anhydrase‌ ‌protein.‌ ‌

Share This Article