A global platform for the Circular Bioeconomy
No Result
View All Result
Friday, March 24, 2023
World Bio Market Insights
  • Home
  • Insights
    • Feature Stories
    • 5 Minute interviews
    • Bio Market Insights Magazine
  • News
    • Technology
    • Business
    • Investment
    • Regulation
  • WBMI TV
    • World Bio Market Insights TV
    • Sponsorship Opportunities
  • Newsletter
    • Subscribe and Past Issues
    • Sponsorship Opportunities
  • Community Partners
  • WBM 2023
World Bio Market Insights is the new name of Bio Market Insights - same team, new look
World Bio Market Insights
  • Home
  • Insights
    • Feature Stories
    • 5 Minute interviews
    • Bio Market Insights Magazine
  • News
    • Technology
    • Business
    • Investment
    • Regulation
  • WBMI TV
    • World Bio Market Insights TV
    • Sponsorship Opportunities
  • Newsletter
    • Subscribe and Past Issues
    • Sponsorship Opportunities
  • Community Partners
  • WBM 2023
No Result
View All Result
World Bio Market Insights
No Result
View All Result

Wastewater from pools could help sustainable agriculture

by Daniela Castim
4 months ago
in Technology
Reading Time: 3 mins read

The wastewater draining from massive pools of sewage sludge has the potential to play a role in more sustainable agriculture, according to environmental engineering researchers at Drexel University. A new study suggests that it’s not only viable, but also could help to reduce the environmental and energy footprint of fertilizer production. The study was made by focusing on the process of removing ammonia from wastewater and converting it into fertilizer, which might even provide a revenue stream for utilities and water treatment facilities.

In the last several years researchers have explored alternatives to the Haber-Bosch nitrogen production process, which has been the standard for more than a century. One promising possibility, recently raised by some water utility providers, is gleaning nitrogen from the waste ammonia pulled from water during treatment.

“Recovering nitrogen from wastewater would be a desirable alternative to the Haber-Bosch process because it creates a ‘circular nitrogen economy,’” said Patrick Gurian, PhD, a professor in the College of Engineering who helped lead the research, which was recently published in the journal Science of the Total Environment. “This means we are reusing existing nitrogen rather than expending energy and generating greenhouse gas to harvest nitrogen from the atmosphere, which is a more sustainable practice for agriculture and could become a source of revenue for utilities.”

Ammonia is a concern as elevated levels can result in overgrowth of vegetation in streams and rivers which can endanger fish species. But the options for removing ammonia are generally time and space consuming as well as energy-intensive.

One option being explored is air-stripping. It works by removing ammonia by raising the temperature and pH of the water just enough to convert the chemical into a gas, which can then be collected in concentrated form as ammonium sulfate.

The research team, led by Gurian and Sabrina Spatari, PhD, from Technion Israel Institute of Technology, analyzed a wastewater scenario that suggests there is a complementary relationship that could result in a more sustainable path for both farmers and water management authorities.

“Our analysis identifies a significant potential for environmental mitigation and economic benefit from implementing air-stripping technology at wastewater treatment plants for producing ammonia sulfate fertilizer,” they wrote. “In addition to ammonia sulfate production as a marketable product, the benefit of reducing the ammonia load in the side-stream before it is recycled into the wastewater stream at the wastewater treatment plant provides an additional justification for adopting air-stripping.”

The team looked at factors ranging from the cost of installing and maintaining an air-stripping system, to the concentration of ammonia and flow rate of the wastewater; to the sources of energy used to drive the collection and conversion process; to the production and transportation cost and market price of the fertilizer chemicals, according to Drexel University.

Findings show that air-stripping emits about 5 to 10 times less GHG than the Haber-Bosch process and uses about 5 to 15 times less energy. From an economic perspective, the overall cost of producing fertilizer chemicals from wastewater is low enough that the producer could sell them at a price more than 12 times lower than Haber-Bosch-produced chemicals and still break even.

“Our study suggests that recovering ammonia can be cost-effective even at low concentration,” they write. “Although high ammonia concentration is environmentally favorable, and can simultaneously support marginal production of ammonium sulfate with lower environmental impact, particularly for life cycle energy, greenhouse gas emissions, and several human and ecosystem health indicators, compared to the Haber-Bosch production.”

While the team acknowledges that air-stripping would churn out fertilizer in smaller amounts than the industrial Haber-Bosch process, being able to collect and reuse any quantity of resources helps to improve the sustainability of commercial agriculture and prevents them from becoming water pollutants.

Tags: News
Previous Post

Yara International and Oerth Bio collaborate to tackle crop resilience

Next Post

Going green is costing us lots of GHG, study says

Related Posts

Amcor and Nfinite partner for nanotech in compostable packaging
Technology

Amcor and Nfinite partner for nanotech in compostable packaging

March 23, 2023
Cotton and polyester fabric separated in groundbreaking study
Technology

Cotton and polyester fabric separated in groundbreaking study

March 21, 2023
Disappearing bottle made from potato starch
Technology

Disappearing bottle made from potato starch

March 16, 2023
Eat your packaging: greening the food chain with edibles
Feature

Eat your packaging: greening the food chain with edibles

March 15, 2023
Say goodbye to soggy straws and hello to starchy ones
Technology

Say goodbye to soggy straws and hello to starchy ones

March 13, 2023
World’s largest mass microalgae biomass production facility to open in April
Technology

World’s largest mass microalgae biomass production facility to open in April

March 10, 2023

Latest News

CheckSammy “Drops” textile waste method

CheckSammy “Drops” textile waste method

March 24, 2023
Windfall Bio raises $9 M first-ever solution for transforming methane emissions into organic fertilizer.

Windfall Bio raises $9 M first-ever solution for transforming methane emissions into organic fertilizer.

March 23, 2023
Amcor and Nfinite partner for nanotech in compostable packaging

Amcor and Nfinite partner for nanotech in compostable packaging

March 23, 2023
Bio-based candles for homes

Bio-based candles for homes

March 23, 2023
  • Home
  • Insights
  • News
  • WBMI TV
  • Newsletter
  • Community Partners
  • WBM 2023

Please note: Bio Market Insights is owned and operated by TNP Media Ltd, after being acquired from Quantuma in April 2021.

Follow us

© Bio Market Insights

No Result
View All Result
  • Home
  • Insights
    • Feature Stories
    • 5 Minute interviews
    • Bio Market Insights Magazine
  • News
    • Technology
    • Business
    • Investment
    • Regulation
  • WBMI TV
    • World Bio Market Insights TV
    • Sponsorship Opportunities
  • Newsletter
    • Subscribe and Past Issues
    • Sponsorship Opportunities
  • Community Partners
  • WBM 2023

© 2021 Bio Market Insights