A research team led by Lund University in Sweden has published a study in Nature Communications which showed how solar power can convert carbon dioxide into fuel. The breakthrough, which uses advanced materials and ultra-fast laser spectroscopy, could play a crucial part in reducing the levels of greenhouse gases in the atmosphere in the future.
As our global carbon dioxide emissions are increasing, many are focusing their research on ways to utilise the sun’s energy to capture greenhouse gases and convert it into fuel or another useful chemical. Although there is still no satisfactory solution, an international research team has now revealed a possible way forward.
“The study uses a combination of materials that absorb sunlight and use its energy to convert carbon dioxide. With the help of ultra-fast laser spectroscopy, we have mapped exactly what happens in that process,” says Tönu Pullerits, chemistry researcher at Lund University.
The researchers have studied a porous organic material called COF, covalent organic framework. COF is known for its capacity to absorb sunlight very efficiently. By adding a so-called catalytic complex to COF, they succeeded, without any additional energy, in converting carbon dioxide to carbon monoxide.
“The conversion to carbon monoxide requires two electrons. When we discovered that photons with blue light create long-lived electrons with high energy levels, we could simply charge COF with electrons and complete a reaction,” says Kaibo Zheng, chemistry researcher at Lund University.
Tönu Pullerits and Kaibo Zheng hope that in the future the discovery can be used to develop larger units that can be used on a global level to, with the help of the sun, absorb carbon dioxide from the atmosphere and convert it into fuel or chemicals.
“We have completed two initial steps with two electrons. Before we can start thinking about a carbon dioxide converter, many more steps need to be taken, and probably even our first two must be refined. But we have identified a very promising direction to take,” concludes Tönu Pullerits.